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Abstract. Gamow-Teller (GT) resonances in finite nuclei are studied in a fully consistent relativistic ran-
dom phase approximation (RPA) framework. A relativistic form of the Landau-Migdal contact interaction
in the spin-isospin channel is adopted, which has a vector part as well as a time-like component. This choice
ensures that the GT excitation energy in nuclear matter is correctly reproduced in the non-relativistic limit.
The GT response functions of doubly magic nuclei 48Ca, 90Zr and 208Pb are calculated using the parameter
set NL3 and g′ = 0.6. It is found that the effects related to Dirac sea states account for a reduction of
6–7% in the GT sum rule. The quenching of the GT strength in finite nuclei implies that the value of g′

in the relativistic model might be enlarged about 7%. The time component in the relativistic form of the
Landau-Migdal force plays a little role in GT resonance energies.

PACS. 21.60.-n Nuclear structure models and methods – 21.60.Jz Hartree-Fock and random-phase ap-
proximations – 24.10.Jv Relativistic models – 24.30.Cz Giant resonances

In recent years, the relativistic mean-field (RMF) the-
ory with non-linear meson self-interactions has achieved a
great success in describing bulk properties of nuclei, not
only spherical but also deformed nuclei and nuclei far from
the β-stability line [1]. In particular, a fully consistent rel-
ativistic random phase approximation (RPA) based on the
RMF has been established [2–5]. The consistency implies
that the particle-hole (p-h) residual interaction and the
nuclear mean field are calculated from the same effective
Lagrangian. The relativistic RPA is equivalent to the time-
dependent RMF in the small amplitude limit [6,7] only
if the particle-hole configuration space includes not only
the pairs formed from the occupied and unoccupied Fermi
states but also the pairs formed from the Dirac states and
occupied Fermi states [8]. It has been found that the effec-
tive Lagrangians which can well describe the ground-state
properties of nuclei could also reproduce their collective
excited states and giant resonances [9].
The investigation of nuclear excitations involving spin-

isospin Gamow-Teller (GT) resonances has attracted great
interest for a long time. The nuclear GT transitions are
essential to many important processes in particle physics
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and astrophysics related to neutrino-nucleus interactions.
The quenching of the observed GT strength in nuclei is
a long-standing issue both experimentally and theoret-
ically. It has been advanced through the recent exten-
sive investigations of GT resonances by the charge ex-
change reactions at intermediate energies [10,11]. The re-
cent (p, n) and (n, p) measurements have observed about
90% of the Ikeda, Fujii and Fujita sum rule [12] at energies
Ex < 50 MeV in medium heavy nuclei [11]. Theoretical
investigations have shown that there are several possible
mechanisms for the unseen strength, which range from the
admixture of 2p-2h components in even-even nuclei [13]
to the coupling to the ∆-hole sector [14]. The theoretical
study of GT matrix elements in nuclei has already re-
vealed some valuable information on nuclear-structure ef-
fects and non-nucleonic degrees of freedom such as mesons
and delta-isobars. A further and clear understanding of
the GT resonances is still required. Up to now most inves-
tigations in the relativistic approach are restricted to the
electric excitations. Although the GT resonance has been
recently studied in the relativistic RPA [15,16] a proper
relativistic form of the p-h interaction in the spin-isospin
channel has not been obtained.
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A relativistic form of the Landau-Migdal g′-term which
could reproduce the non-relativistic result for the GT ex-
citation energy in nuclear matter has been recently pro-
posed [17]. It includes a vector part of the spin-isospin in-
teraction operator as well as a time-like component. The
study of the relativistic description of GT resonances in
nuclear matter has pointed out a new quenching mecha-
nism due to the relativistic effects. The purpose of this
Letter is to investigate how the relativistic effect on the
quenching of the GT strength plays a role in finite nu-
clei. We shall learn whether or not the previous under-
standings in nuclear matter in ref. [17] would be changed
by the finite size and the exact consideration of the spin-
orbit splitting. The effect of the inclusion of negative states
and the time-like component in the relativistic form of the
Landau-Migdal g′-term is another interesting question to
answer in this Letter. We shall investigate the GT res-
onances in finite nuclei in the fully consistent relativistic
RPA. The RPA equation is solved in the momentum space,
which allows large configuration calculations and is conve-
nient to deal with derivative coupling terms. The GT re-
sponse functions of 208Pb, 90Zr and 48Ca are studied. We
shall emphasize the contribution of the Dirac states to the
quenching of the Ikeda sum rule in the GT strengths due
to the completeness of nuclear wave functions as pointed
out for nuclear matter in ref. [17].
The relativistic RPA is built on the ground state which

is calculated in the RMF theory. For a consistent RPA cal-
culation the residual p-h interaction giving rise to giant
resonances must be obtained from the same Lagrangian.
The spin-isospin correlations in the relativistic approach
are induced by the isovector mesons π and ρ. In the ex-
isting effective Lagrangians explicitly built for the RMF
the pion term does not appear since it does not contribute
to the mean field, while for ρ the tensor coupling term is
generally ignored and the vector coupling term is strongly
renormalized to give the correct neutron-proton symme-
try energy. To remain consistent we choose to introduce in
the effective Lagrangian a pseudo-vector pion term but no
ρ tensor term. Thus, the GT correlations will be induced
by the Lagrangian

L = − fπ

mπ
ψγ5γ

µ∂µτ · πψ − gρψγµτ · ρµψ . (1)

It is well known that due to the pseudo-vector coupling
of the pion and tensor coupling of ρ an effective interac-
tion with the Landau-Migdal parameter g′-term has to be
introduced, which has the form g′σ1 · σ2τ 1 · τ 2 in the
non-relativistic limit. There are several ways to introduce
this term in the interaction Lagrangian [15,18]. However,
it has been pointed out in ref. [17] that the way to intro-
duce g′ in the relativistic model is model dependent and
that the following choice

L = g5

2
ψΓµ

i ψψΓµiψ, Γµ
i = γ5γ

µτi, g5 = g′
f2

π

m2
π

,

(2)
ensures that in the non-relativistic limit one can recover
the expression of the GT excitation energy in nuclear
matter.

The response function of the system to an external field
is given by the imaginary part of the retarded polarization
operator,

R(P, P ; k, k′;E) =
1
π
ImΠR(P, P ; k, k′;E) , (3)

where P is the external field operator. The relativistic
RPA polarization operator is obtained by solving the
Bethe-Salpeter equation [19],

Π(Q,Q′;k,k′, E) = Π0(Q,Q′;k,k′, E)

−
∑

i

g2
i

∫
d3k1d3k2Π0(Q,Γ i;k,k1, E)

×Di(k1,k2, E)Π(Γi, Q
′;k2,k′, E) , (4)

where the Γi’s and Di’s are the vertex couplings and the
corresponding meson propagators, respectively, Q and Q′
represent the external or vertex operators. Generally, the
operators of spin-isospin excitations are

P± =
√
2π

A∑
i

rL
i YLµ(r̂i)(στ±)i , (5)

where τ± = (τx± iτy)/
√
2 and L = 0 for the GT operator.

The operator is usually multiplied by γ0 for vector density
excitations.
The model-independent Ikeda sum rule [12] is ex-

pressed as

〈0|P+P−|0〉 − 〈0|P−P+|0〉 = 3(N − Z) , (6)

where |0〉 is either the nuclear correlated or uncorrelated
ground state.
The vertex operators corresponding to π- and ρ-

coupling are

ΓπΓπ = γ5γµq
µ(1)γ5γµq

µ(2)τ 1τ 2 ,

ΓρµΓ
µ
ρ = γµ(1)γµτ 1τ 2

= [γ0(1)γ0(2)− γ0γ5σ(1)γ0γ5σ(2)]τ 1τ 2 , (7)

with the corresponding meson propagators

Dπ =
(

fπ

mπ

)2 1
(2π)3

1
q2 −m2

π + iη
, (8)

Dρ = − g2
ρ

(2π)3
1

q2 −m2
ρ + iη

. (9)

The vertex operator of the Landau-Migdal force intro-
duced in eq. (2) is

ΓµΓ
µ = [γ0γ5(1)γ0γ5(2)− γ0σ(1)γ0σ(2)]τ 1τ 2 . (10)

The time component and the current part have to be cal-
culated separately. The propagator for the contact inter-
action term in the Lagrangian is

Dg′ =
g′

(2π)3

(
fπ

mπ

)2

. (11)
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The multipole expansion in momentum space is per-
formed and the integrals of the angular parts can be car-
ried out. The retarded unperturbed polarization operator
with a fixed angular momentum J in the momentum space
is written as

ΠJ
0 (Q,Q′; k, q;E) = − (4π)2

2J + 1

×
{ ∑

ph

(−)jp+jh+1

[
〈ψh‖Q†‖ψp〉〈ψp‖Q′‖ψh〉
(εh − εp) + E + iη

+
〈ψp‖Q†‖ψh〉〈ψh‖Q′‖ψp〉
(εh − εp)− E − iη

]

−
∑
ᾱh

(−)jᾱ+jh+1

[ 〈ψᾱ‖Q†‖ψh〉〈ψh‖Q′‖ψᾱ〉
(εᾱ − εh) +E + iη

+
〈Ψh‖Q†‖ψᾱ〉〈ψᾱ‖Q′‖ψh〉
(εᾱ − εh)− E − iη

] }
, (12)

where h, p and ᾱ correspond to the occupied states in the
Fermi sea, positive-energy unoccupied states and negative-
energy states in the Dirac sea, respectively. The advantage
of solving the Bethe-Salpeter equation in the momentum
space is to allow the inclusion of as many configurations
as required. Indeed, the numerical work amounts to in-
vert matrices the size of which depends on the number of
mesh points chosen in momentum space and the number
of vertex operators. Therefore, increasing the number of
configurations does not affect substantially the numerical
effort in contrast to the matrix diagonalization method.
The external operator P after multipole expansion can

be expressed as

P = γ0r
J−1[YJ−1 ⊗ σ]J . (13)

The vertex operator produced by the pion is

Qπ = −γ0γ5q0YJjJ(kr)−
∑

L=J±1

iL+Jq
√
2L+ 1

×
(
L 1 J
0 0 0

)
γ0[YL ⊗ σ]JjL(kr) . (14)

The time component of the operator produced by the vec-
tor part of ρ vanishes and only its space component con-
tributes and leaves a minus sign on the propagator:

Qρ = γ0γ5[YJ ⊗ σ]JjJ (kr) . (15)

The time component of the vertex operator produced by
the Landau-Migdal force is

Qg′
0 = γ0γ5YJ(r̂)jJ(kr) . (16)

Its space components are

Qg′
J±1 = γ0 [YJ±1 ⊗ σ]J jJ±1(kr) , (17)

which produces also a minus sign on the propagator. The
isospin part of the operators is multiplied by τ+/

√
2. There

are in total 5 operators for Q, therefore the polarization
ΠJ (Q,Q′) is a (5× 5)-matrix.
The single-particle energies and wave functions are

solutions of the self-consistent RMF equations obtained
with the starting effective Lagrangian. A nucleon state
can be specified by a set of quantum numbers α =
(na, la, ja,ma) ≡ (a,ma), where qa = −1 and +1 for neu-
tron and proton states, respectively. The nucleon wave
function with energy εα is written as

ψα =
1
r

(
iGa(r)

Fa(r)σ · r̂
)
Yα(r̂)χ(qa) , (18)

χ(qa) and Yα being the isospinor and spin-spherical har-
monic function, respectively.
The charge-exchange excitations flip the isospin and

pick up only neutron-proton or proton-neutron pairs. The
reduced matrix element for the external spin-isospin exci-
tation is

〈ψh‖P‖ψp〉 =
∫
(GhGp〈h‖TJ−1 J‖p〉

+FhFp〈h̄‖TJ−1 J‖p̄〉)rJ−1dr , (19)

where h̄ ≡ nh l̄hjh, and l̄ is the orbital angular momentum
of the lower component in the Dirac spinor. Here, we have
introduced 〈h‖TLJ‖p〉 = 〈nhlhjh‖[YL ⊗ σ]J‖nplpjp〉 [20].
The reduced matrix elements of the operators (14)-(17)
are

〈ψh‖Qπ‖ψp〉 = q0

∫
(GhFp − FhGp)jJ(kr)dr

×〈nhlhjh‖YJ‖np l̄pjp〉+ q
∑

L=J±1

f(L)√
2L+ 1

×
∫
(GhGp〈h‖TLJ‖p〉+ FhFp〈h̄‖TLJ‖p̄〉)jL(kr)dr ,(20)

where f(L) = J + 1 for L = J + 1 and J for L = J − 1,

〈ψh‖Qρ‖ψp〉 =
∫
(GhFp〈h‖TJJ‖p̄〉

−FhGp〈h̄‖TJJ‖p〉)jJ (kr)dr , (21)

〈ψh‖Qg′
0 ‖ψp〉 =

∫
(GhFp − FhGp)jJ (kr)dr

×〈nhlhjh‖YJ‖np l̄pjp〉 , (22)

〈ψh‖Qg′
J±1‖ψp〉 =

∫
(GhGp〈h‖TJ±1 J‖p〉

+FhFp〈h̄‖TJ±1 J‖p̄〉)jJ±1(kr)dr . (23)

We calculate the L = 0 GT excitations for the double-
closed-shell nuclei 48Ca, 90Zr and 208Pb, which have been
extensively investigated experimentally. The ground-state
wave functions of those nuclei are calculated in the RMF
with the parameter set NL3 [7]. The continuous single-
particle spectrum is discretized in a harmonic-oscillator
basis. An averaging parameter ∆ = 2 MeV is used to
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Table 1. GT energies of 48Ca, 90Zr and 208Pb. E corresponds to the centroid energies of theoretical results with g′ = 0.6. The
percentages of Ikeda sum rule are calculated up to E ≤ 60 MeV. The experimental data are taken from refs. [10,21,22].

Theoretical Results Experiment

Nuclei E (MeV) Strength % of sum rule Energy Strength
RRPA Hartree RRPA (MeV) % of sum rule

48Ca 10.1 93.0 93.8 10.5 35
90Zr 15.4 92.3 93.2 15.6 ± 0.3 90 ± 5

208Pb 18.9 91.6 92.6 19.2 ± 0.2 60–70
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Fig. 1. GT response functions for 48Ca, 90Zr and 208Pb. The
GT strengths are calculated in the relativistic RPA with the
parameter set NL3. The solid and dashed curves correspond
to the RPA and Hartree strengths, respectively. Experimental
energies are shown by the arrows.

smooth out the response functions, which is performed
by replacing the excitation energy E + iη in eq. (8)
by E + i∆/2. The residual p-h interaction is produced
through the isovector mesons and the Landau-Migdal
force in the Lagrangian eqs. (1), (2), where g′ = 0.6 and
the standard values f2

π/4π = 0.08, mπ = 138 MeV are
adopted. All other coupling constants are those of NL3.
The calculated Hartree and correlated GT strengths

for 48Ca, 90Zr and 208Pb are shown in fig. 1. The
dashed and solid curves correspond to the Hartree and
RPA results, respectively. The main contributions to
the GT excitation are from the neutrons at the Fermi
surface excited to the unoccupied proton states with
the same orbital angular momentum. For instance, the
main p-h configurations are: (π1g9/2(ν1g9/2)−1) with
εph = 6.3 MeV and (π1g7/2(ν1g9/2)−1) with εph =
13.9 MeV in 90Zr; (π1f7/2(ν1f7/2)−1), εph = 0.3 MeV

and (π1f5/2(ν1f7/2)−1), εph = 8.4 MeV in 48Ca, which ex-
hibit peaks in the Hartree strengths. There are more con-
tributing configurations in 208Pb. The collectivity effect
is mainly due to the Landau-Migdal term of the residual
interaction. It results in an upward shift of the strength.
The centroid energies of the main peaks in Hartree and in
RPA are listed in table 1. A good agreement with the ex-
perimental data is observed when g′ = 0.6 is chosen. The
total strengths up to 60 MeV exhaust the Ikeda sum rule
by about 92–94%. We also calculate the strengths of β+

excitations for those three nuclei and find that the total
strengths of β+ in eq. (6) are only 0.7% of the Ikeda sum
rule for 48Ca, 1.2% for 90Zr and 0.6% for 208Pb. From ta-
ble 1 it can also be seen that the total GT strength below
60 MeV is similar in Hartree and in RPA. In ref. [17] it was
also found that the GT quenching is about 12% in infinite
matter and 6% in nuclei calculated in Hartree approxi-
mation. The rest of the strength is connected with the
effects of the Dirac sea states. NN̄ pairs involving states
in the Fermi sea and negative-energy states can also carry
GT strength, if one considers backward-going graphs and
the no-sea approximation. It was found that the relativis-
tic factor (1 − 2v3

F/3) ∼ 0.88 in nuclear matter produced
about 12% quenching of the GT strength and a 14% larger
value of g′ than that in the non-relativistic model should
be adopted [17]. Our results of the quenching of the Ikeda
sum rule in finite nuclei implies that the value of g′ in the
relativistic model might be enlarged about 7%. In compar-
ison with the results in ref. [15] we found that g′ = 0.7 in
the present form cannot reproduce the experimental GT
energies, for instance that produces the centroid energy
of the GT resonance Ē = 16.3 MeV for 90Zr. The in-
clusion of negative-energy states in the present work has
negligible influence on GT excitation energies, as noted in
ref. [17]. The time component in the relativistic form of
the Landau-Migdal force plays a little role in GT energies.
In summary, we have investigated in finite nuclei the

nuclear spin-isospin excitations, especially the GT res-
onance in a fully relativistic RPA. A relativistic form
of the Landau-Migdal contact interaction in the spin-
isospin channel is adopted, which reproduces in the non-
relativistic limit the excitation energy of the giant GT
resonance in infinite matter [17]. The GT resonances in
48Ca, 90Zr and 208Pb are investigated. It is found that the
RPA strengths up to 60 MeV exhaust the Ikeda sum rule
by only about 93%. The missing fraction is taken by the
pairs formed between states in the Fermi sea and Dirac
sea. This quenching mechanism is specific of the relativis-
tic description of the GT mode. The quenching of the GT
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strength in finite nuclei implies that the value of g′ in the
relativistic model might be enlarged about 7%.
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